

INTRODUCTION

- E-cigarette use is on the rise in western populations resulting in a ban, by the FDA, on flavored e-cigarette pods except for menthol and tobacco
- Certain states, like New York, have also placed regulation on Menthol flavored ecigarettes
- JUUL Labs now only sells Menthol, Classic **Tobacco, and Virginia Tobacco pod flavors**
- **JUUL Pods are composed of PG/VG**, nicotine, benzoic acid, and flavors
- **E-cigarettes and flavoring chemicals have** been shown to induce mitophagy and mitochondrial dysfunction

HYPOTHESIS

Exposure to pod-based menthol and tobacco flavored aerosols will result in alterations in mitochondrial bioenergetics and electron transport chain (ETC) protein levels

METHODS

- Beas2b were grown in DMEM:F12 complete media with 5% FBS, 15mM HEPES, and 1% pen/strep
- Cells were serum deprived to 0% FBS and exposed to 66 puffs of JUUL Menthol 5% nicotine or JUUL Virginia Tobacco 5% nicotine vapors or air
- 20,000 cells were plated in 6 wells with 2 blank wells in a seahorse cell culture miniplate and exposed, immediately or 24 hours post final exposure Cell Mito Stress Test was preformed using Seahorse XFp
- 300,000 cells were plated in each well of a 6 well plate and exposed, immediately or 24 hours post final exposure Western Blot was performed using cell protein and probed using total OXPHOS antibody

Menthol pod-based e-cigarettes induces mitochondrial dysfunction in lung epithelial cells Thomas Lamb, Thivanka Muthumalage, and Irfan Rahman

University of Rochester Medical Center, Department of Environmental Medicine, Rochester, NY

SUMMARY

Immediately after final JUUL Menthol exposure resulted in a significant increase in non-mitochondrial oxygen consumption and proton leak, while significantly decreasing coupling efficiency

• 24 hours after final JUUL Menthol exposure resulted in a significant increase in nonmitochondrial respiration while significantly decreasing basal respiration, maximal

respiration, and spare respiratory capacity JUUL Menthol exposure decreased electron transport chain proteins

• JUUL Virginia Tobacco exposure did result in a significant increase in non-

mitochondrial oxygen consumption at both time points but did not alter mitochondrial respiration at either time points

• JUUL Virginia Tobacco exposure resulted in a significant increase in certain ETC proteins at the immediate

CONCLUSION

 Non-mitochondrial oxygen consumption is increased in JUUL Menthol and JUUL Virginia Tobacco exposed cells • JUUL Menthol exposure may induce a shift towards glycolysis due to an increase in extracellular acidification rate, a measure of glycolysis in the cell mito stress test JUUL Menthol and not JUUL Virginia **Tobacco exposure results in decrease in** mitochondrial respiration with a decrease in basal respiration at the twenty-four hour time point and a decrease in complex I, II, and IV at the immediate time point and complex I at the twenty-four hour time points

ACKNOWLEDGEMENTS

This study was supported by NIH 1R01HL135613, WNY Center for Research on Flavored Tobacco Products (CRoFT) # U54CA228110, and Toxicology Training Program grant T32-ES007026.

