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Abstract: This chapter will review the statistical methods used in RNA sequenc-
ing data analysis, including bulk RNA sequencing and single-cell RNA sequenc-
ing. RNA sequencing data analysis has been widely used in biomedical and 
biological research to identify genes associated with certain conditions or diseases. 
Many statistical methods have been proposed to analyze bulk and single-cell RNA 
sequencing data. Several studies have compared the performance of different sta-
tistical methods for RNA sequencing data analysis through simulation studies and 
real data evaluations. This chapter will summarize the statistical methods and the 
evaluation results for comparing different statistical analysis methods used for 
RNA sequencing data analysis. It will cover the statistical models, model assump-
tions, and challenges encountered in the RNA sequencing data analysis. It is 
hoped that this chapter will help researchers learn more about the statistical per-
spective of the RNA sequencing data analysis and enable them to choose appro-
priate statistical analysis methods for their own RNA sequencing data analysis. 
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INTRODUCTION

RNA sequencing, including bulk RNA sequencing and single-cell RNA sequenc-
ing, is a popular technology used in biological and biomedical fields (1, 2). 
Figure 1 shows the analysis flow of RNA sequencing data. In RNA sequencing 
experiments, RNAs of interest need to be extracted first from the cells and then 
converted to complementary DNA (cDNA) to be sequenced by high-throughput 
platforms. Next, the sequenced short cDNA fragments are mapped to a genome or 
a transcriptome, and the summarized count data are derived to estimate the 
expression levels for each gene or isoform (3–5). Finally, statistical methods or 

Figure 1  Analysis flow of RNA sequencing data.
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machine learning methods are applied to the summarized count data after nor-
malization to evaluate transcription levels under different biological and biomedi-
cal conditions, to discover novel transcripts and isoforms, and to detect alternative 
splicing and splice junctions (6). The single-cell RNA sequencing, in addition, 
allows to understand gene expression pattern within the cell; to identify cell het-
erogeneity, cell population, and sub-population; and to examine the effects of low 
copy mRNA distribution and transcriptional regulation (7). Pathway analysis and 
gene enrichment analysis are usually performed further on selected significant 
genes after differential analysis (8, 9).

RNA sequencing has been widely used to study the mechanism of complex 
disease, identify potential biomarkers for clinical indications and infer gene path-
ways (10–12). Similar to bulk RNA sequencing, single-cell RNA sequencing has 
been applied to identify cell populations, infer gene regulatory networks, and 
track different cell lineages (13–15). Single-cell RNA sequencing also has the 
potential to identify drug-resistant clones, assist non-invasive biopsy diagnosis, 
and infer stem cell regulatory networks (16–18).

As the sequencing technology advances rapidly, the cost of both bulk RNA 
sequencing and single-cell RNA sequencing also dramatically decreased 
(18, 19). With this massive amount of RNA sequencing data now available, it 
is very challenging to obtain accurate information from the data and further 
transform this information into useful knowledge (20, 21). Differential gene 
expression analysis also has its own challenges. The distribution of read cover-
age might be different along the genome attributed to the variation of genome 
compositions. Meanwhile, larger genes have more mapped reads than smaller 
genes although their expression levels might be the same. Furthermore, many 
biological variations sometimes cannot be accounted for in the data analysis 
due to relatively small sample sizes for each experimental condition. This 
chapter focuses on the statistical analysis methods used for differential analy-
sis in both bulk RNA sequencing and single-cell RNA sequencing data. 
Commonly used statistical methods, their model assumptions, and tests for 
RNA sequencing differential analysis are discussed (Table 1). The simulation 
results of comparing different statistical methods and challenges encountered 
in the data analysis are summarized. Recommendations on the selection of 
appropriate statistical methods for RNA sequencing differential analysis are 
also provided. 

STATISTICAL METHODS FOR BULK RNA SEQUENCING 
DIFFERENTIAL ANALYSIS

Current popular methods for bulk RNA-seq differential analysis methods could 
be classified into four categories based on the type of statistical methods used for 
differential analysis: (i) t-test analogical methods (Cuffdiff and Cuffdiff2) (22, 23), 
(ii) Poisson or negative binomial model-based methods (edgeR, DESeq, DESeq2, 
baySeq, EBSeq) (24–29), (iii) non-parametric methods (SAMseq and NOIseq) 
(30–32), and (iv) linear models (voom and sleuth) (33, 34).
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TABLE 1	 Summary of gene differential expression analysis 
methods for bulk RNA and single-cell RNA 
sequencing data

Bulk RNA sequencing data

Method
Read count distribution 
assumption/model Differential analysis test Reference

Cuffdiff and 
Cuffdiff2

Similar to t-distribution on log-
transformed data

t-test analogical method (22, 23 )

edgeR Negative binomial distribution Exact test analogous to Fisher’s 
exact test or likelihood ratio test

(24, 25)

DESeq Negative binomial distribution Exact test analogous to Fisher’s 
exact test

(26)

DESeq2 Negative binomial distribution Wald test (27)

baySeq Negative binomial distribution Posterior probability through 
Bayesian approach

(28)

EBSeq Negative binomial-beta empirical 
Bayes model

Posterior probability through 
Bayesian approach

(29)

SAMseq Non-parametric method Wilcoxon rank statistics based 
permutation test

(30)

NOIseq Non-parametric method Corresponding logarithm of fold 
change and absolute expression 
differences have a high 
probability than noise values

(31, 32)

voom Similar to t-distribution with 
empirical Bayes approach

Moderated t-test (33)

Sleuth Additive response error model Likelihood ratio test (34)

Single-cell RNA sequencing data

Method
Read count distribution 
assumption/model Differential analysis test Reference

SCDE Two-component mixture model 
with Poisson and negative 
binomial distributions

Posterior probability of being 
differentially expressed through 
Bayesian approach

(40)

MAST Hurdle model with indicator 
variable and logistic regression

Differences in summarized regression 
coefficients between groups 
through bootstrap method

(41)

scDD Bayesian modeling approach Bayes factor score through 
permutation method

(42)

DEsingle zero-inflated negative binomial 
model

Likelihood ratio test (43)

SigEMD Logistic regression and Wald test for 
selecting genes with zero count 
and then impute zero counts 
using the Lasso regression model

Non-parametric test based on Earth 
Mover’s Distance (EMD) through 
permutation method

(44)

Table continued on following page
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Cuffdiff and Cuffdiff2

Both the Cuffdiff and Cuffdiff2 methods use the t-test analogical method to test 
the changes in gene expression levels between different groups (22, 23). The 
mean gene expression level for each gene is determined using the maximum like-
lihood estimating method for different groups. Then, the mean difference of the 
logarithm-transformed gene expression levels of the estimated gene expression 
levels is used as the numerator in the t-test analogical method, and the estimated 
variance of the mean differences in logarithm is estimated using the delta method. 
The power of the t-test analogical method in Cuffdiff and Cuffdiff2 depends on the 
length of the transcripts tested as longer transcripts yield more reads. Thus, the 
results from Cuffdiff and Cuffdiff2 are biased toward a higher probability of iden-
tifying longer transcripts or genes. The major differences between Cuffdiff and 
Cuffdiff2 are methods used to extrapolate the estimated gene expression levels. 
Cuffdiff determines the estimated gene expression levels using the maximum like-
lihood method with the Bayesian approach and Poisson distribution assumption, 
while the Cuffdiff2 method improves the estimation of gene expression levels 
through modeling cross-replicate variability in transcript-level counts and adopts 
the negative binomial distribution assumption for those estimated counts.

edgeR

For each gene in each sample, edgeR assumes that the summarized count follows 
a negative binomial distribution with mean equal to the multiplication of library 
size and relative abundance (the gene expression levels), and the variance for each 

TABLE 1	 Summary of gene differential expression analysis 
methods for bulk RNA and single-cell RNA 
sequencing data (Continued)

Single-cell RNA sequencing data

Method
Read count distribution 
assumption/model Differential analysis test Reference

SINCERA Exact or normal distribution Welch’s t-test or Wilcoxon rank 
sum test

(46)

D3E Discrete distribution Cramér-von Mises test, 
Kolmogorov–Smirnov test or 
likelihood ratio test

(47)

EMDomics Distribution functions are 
different

EMD-based permutation test (48)

Monocle2 Generalized linear model 
approach

Likelihood ratio test (45, 51)

Linnorm t-distribution with empirical Bayes 
approach

Moderated t-test (49)

Discriminative 
Learning

Multiple logistic regression model Likelihood ratio test (50)
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gene is a function of the mean (24, 25). The genewise dispersion is estimated 
using a conditional maximum likelihood method through the empirical Bayes 
approach. For gene differential expression testing, edgeR uses either an exact test 
analogous to Fisher’s exact test with consideration of overdispersion or a likeli-
hood ratio test within a negative binomial generalized log-linear model 
framework.

DESeq and DESeq2

DESeq uses a modified negative binomial model implemented in edgeR (26). 
DESeq estimates the variance based on the relative abundance of the gene through 
a data-driven approach. DESeq tests gene expression differences between groups 
using an exact test analogous to Fisher’s exact test with test statistics as the sum of 
total count within each group and across groups. DESeq2 takes a generalized lin-
ear model approach to model the group differences in relative abundance, which 
can also accommodate more complex study designs (27). DESeq2 assumes that 
the dispersion follows a log normal prior distribution with means being a function 
of normalized counts for each gene. DESeq2 uses an empirical Bayes approach to 
integrate the dispersion and fold change estimates and tests the gene differential 
expression using the Wald test.

baySeq

baySeq assumes that the summarized count data follow a negative binomial dis-
tribution and use the whole dataset to obtain a prior distribution for the estimated 
model parameters (28). The data dispersion is approximated using the maximum 
likelihood method. The baySeq method uses a posterior probability of non-
differential expression between groups and a Bayesian FDR estimate to select sig-
nificantly differentially expressed genes between groups.

EBSeq

EBSeq assumes that within each biological condition, the expected count from 
each gene follows a negative binomial distribution (29). Within each group, the 
mean of gene expressions is a function of the variance of gene expressions. The 
variance of gene expressions follows a beta distribution with the two parameters 
estimated using the expectation-maximization (EM) algorithm. For the gene 
expression differential tests between groups, EBSeq obtains a posterior probability 
of genes being differentially expressed between groups through Bayes’ rule using 
the EM algorithm within the negative binomial-beta empirical Bayes model frame-
work. EBSeq also uses a Bayesian FDR estimate to assist the selection of signifi-
cantly differentially expressed genes.

SAMseq

SAMseq is a non-parametric method proposed for differential gene expression 
testing between groups (30). For between-group comparisons, SAMseq uses the 
two-sample Wilcoxon rank statistics. SAMseq uses a re-sampling procedure to 
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account for different sequencing depths in the differential data analysis. The null 
distribution of the Wilcoxon rank statistic and FDR are estimated using the per-
mutation method.

NOIseq

NOIseq is also a non-parametric method for testing differential gene expression 
between groups through ratio of fold change and absolute expression differences 
(31, 32). NOIseq uses sequencing-depth corrected and normalized RNA sequenc-
ing count data and models the noise distribution by contrasting the logarithm of 
fold change and absolute expression differences between groups. NOIseq consid-
ers a gene to be differentially expressed between groups if the corresponding loga-
rithm of fold change and absolute expression difference values have a high 
probability to be higher than noise values.

voom

voom takes a linear modeling strategy to model the count data (33). It determines 
the mean–variance relationship based on the delta rule and Taylor’s theorem and 
obtains the estimate for variance through the piecewise linear function defined by 
the fitted LOWESS curve. voom also generates a weight for each observation and 
uses the estimated variance and weight as the input in the limma empirical Bayes 
analysis pipeline. The gene expression differential analysis between groups is 
tested using the moderated t-statistics.

Sleuth

Sleuth uses an additive response error model with the total between-sample vari-
ability being an additive of biological variance and inferential variance (34). The 
biological variance is composed of between-sample variation and variation during 
the library preparation process. The inferential variance includes variation due to 
random sequencing of fragments and variation coming from computational infer-
ence procedures. Sleuth tests gene differential expression between groups using 
the likelihood ratio test.

STATISTICAL METHODS COMPARISONS FOR BULK RNA 
SEQUENCING DIFFERENTIAL ANALYSIS

In 2013, Soneson conducted an extensive comparison of 11 methods used for 
bulk RNA sequencing differential analysis through both simulation studies and 
real RNA sequencing data examples (35). The methods Soneson compared include 
edgeR, DESeq, baySeq, EBSeq, SAMseq, and voom, described before. The com-
parison of those methods showed that all methods had low power with small 
sample sizes, and there was no optimal method applicable for all conditions. 
voom performed well under many conditions and was robust to outliers and com-
putationally efficient. However, voom performed worse when the variances were 
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unequal between groups. SAMseq requires larger sample sizes (at least 4–5 sam-
ples per group) to detect significantly differentially expressed genes. The compari-
son also found that DESeq was often overly conservative, and edgeR was too 
liberal with a larger number of false positives. Both baySeq and EBSeq were com-
putationally less efficient. baySeq showed highly variable results when significant 
genes were all modulated in one direction, and the results were largely affected by 
outliers. EBseq had a poor false discovery rate (FDR) control in most situations 
and was relatively robust to outliers.

Previous experimental validation of selected differentially expressed genes 
from multiple RNA sequencing differential expression analysis methods (Cuffdiff2, 
edgeR, DESeq2) found a high FDR of the Cuffdiff2 method and high false negative 
rates of the DESeq2 method (36). The edgeR method had relatively higher sensi-
tivity and specificity than the Cuffdiff2 and DESeq2 methods. In addition, the 
experimental validation also showed that pooled samples in the experiments suf-
fered from lower positive predictive values than individual samples. 

Using results from qRT-PCR as the gold standard, an extended review of eight 
RNA sequencing differential analysis methods (baySeq, DESeq, DESeq2, EBSeq, 
edgeR, voom, NOIseq, and SAMseq) was conducted to determine their precision, 
accuracy, and sensitivity (37). By comparing the results from qRT-PCR and selected 
differentially expressed genes from each of the eight methods, it was found that 
voom, NOIseq, and DESeq2 showed more consistent results than the other meth-
ods. In addition, the significantly differentially expressed genes selected by con-
sensus of baySeq, DESeq2, voom, and NOISeq had the best performance indicators 
on precision, accuracy, and sensitivity. Furthermore, the investigation also found 
that mapping methods in the pre-processing step of RNA sequencing data analysis 
had minimal effect on downstream RNA sequencing gene differential analysis, 
given that a reference genome for the RNA sequencing data was available.

A recent investigation of six RNA sequencing differential analysis methods 
(DESeq, DESeq2, edgeR, SAMseq, EBSeq, and voom) focused on their stability 
measured by the area under the correlation curve (38). Among the explored fac-
tors that have a potential to affect the stability of RNA sequencing differential 
analysis methods, fold changes of truly differentially expressed genes and their 
variability seem largely to affect the stability of those methods. Larger sample size 
is associated with increased stability, and a sample size of 10 or larger in each 
group results in a plateau on stability. DESeq2 and edgeR were less likely to be 
affected by outliers on their stability measurements.

STATISTICAL METHODS FOR SINGLE-CELL RNA SEQUENCING 
DIFFERENTIAL ANALYSIS

Single-cell RNA sequencing is becoming popular in recent years to better under-
stand the stochastic process and gene regulations in a granular resolution (13, 15, 
16, 39). The commonly used gene differential expression analysis in single-cell RNA 
sequencing can be classified into two categories, with one category modeling excess 
zeros (SCDE, MAST, scDD, DEsingle, and SigEMD) (40–44) and the other category 
without modeling the excess zeros in the single-cell RNA sequencing data (DESeq2, 
SINCERA, D3E, EMDomics, Monocle2, Linnorm, and Discriminative Learning) 
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(12, 27, 45–50). DESeq2 is a popular method used for bulk RNA sequencing data 
analysis, which is also often used for analyzing single-cell RNA sequencing data for 
testing of differential expression between groups.

Single-cell differential expression (SCDE)

SCDE uses a two-component mixture model for the gene expression data from 
single-cell RNA sequencing experiments (40). The excess zero part (dropouts) is 
modeled by a Poisson distribution with user-specified thresholds for the mean 
(such as 0.1). The expressed genes are modeled by a negative binomial distribu-
tion technique. For gene differential expression analysis between groups, SCDE 
takes a Bayesian approach to obtain the posterior probability of a gene being 
expressed in one group and then uses a fold expression difference between groups 
as the test statistics with empirical P-values calculated to select differentially 
expressed genes.

MAST

MAST uses a hurdle model approach for single-cell RNA sequencing gene differ-
ential expression analysis (41). MAST assumes conditional independence between 
expression rate and expression levels for each gene. MAST uses an indicator vari-
able to denote whether a gene is expressed in a cell and fits a logistic regression 
for the discrete indicator variable. For genes expressed in a cell, MAST fits a nor-
mally distributed linear model. The gene differential expression analysis between 
groups is tested using the differences in summarized regression coefficients 
between groups. The null distribution of the test statistics is estimated through a 
bootstrap method with empirical Bayes approach regularizing model parameters. 

scDD

scDD is also based on a Bayesian modeling approach to detect differentially 
expressed genes between groups (42). ScDD models the excess zeros using a 
logistic regression and models the non-zero gene expressions using a conjugate 
Dirichlet process mixture model of normal distributions. For testing gene differ-
ential expressions, scDD calculates an approximate Bayes factor score that com-
pares the probability of differential expression with the probability of 
non-differential expression. The empirical P-values for the differential expression 
tests are computed using a permutation method. 

DEsingle

DEsingle uses a zero-inflated negative binomial (ZINB) model to characterize the 
read counts and excess zeros in single-cell RNA sequencing data (43). The ZINB 
model has two components, one modeling the excess zeros through an indicator 
variable multiplied by the proportion of constant zeros and the other modeling 
the positive gene expressions through a negative binomial model multiplied by 
the proportion of non-zeros. The gene differential expression analysis is con-
ducted through likelihood ratio tests within the ZINB model framework.
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SigEMD

Different from other excess zero modeling methods for single-cell RNA sequenc-
ing differential analysis, SigEMD takes an additional step in modeling the excess 
zeros (44). SigEMD first uses logistic regression and the Wald test to select genes 
with zero counts that are affecting gene expression distributions, then SigEMD 
imputes those zero counts through a Lasso regression model. The gene differential 
analysis between groups is conducted using a non-parametric test based on Earth 
Mover’s Distance (EMD). The P-values are computed using a permutation method.

SINCERA

SINCERA is a pipeline developed for single-cell RNA sequencing data analysis 
(46). SINCERA can be used for the pre-processing of single-cell RNA sequencing 
data, identifying cell types and key gene expression regulators, selecting differen-
tially expressed genes, and predicting gene signatures. For gene differential analy-
sis between groups, SINCERA uses the Welch’s t-test when the sample size of both 
groups is >5; otherwise, SINCERA uses the Wilcoxon rank sum test. SINCERA 
also includes the SAMseq algorithm as an optional method for selecting differen-
tially expressed genes from single-cell RNA sequencing data.

D3E

D3E is a discrete distribution method used for single-cell RNA sequencing gene 
differential expression analysis (47). To identify genes differentially expressed 
between groups, D3E uses either the Cramér-von Mises test, the Kolmogorov–
Smirnov test or the likelihood ratio test. To test the hypothesis of the driving 
mechanism in apparent changes, D3E fits a transcriptional burst model to the 
expression data for each gene through a method of moments or a Bayesian 
approach. Following the transcriptional burst model, parameter changes between 
groups will be calculated. 

EMDomics

EMDomics detects significantly differentially expressed genes between groups for 
single-cell RNA sequencing data by comparing the two distribution functions of 
gene expressions between groups (48). EMDomics compares the differences 
between groups based on EMD, a commonly used approach to compare two his-
tograms in imaging analysis. EMDomics measures the differences between two 
normalized distributions of the two groups through normalized total cost of trans-
forming distributions between groups. Permutation test is used to compute the 
P-values for the EMD tests.

Monocle2

Using the census algorithm, Monocle2 converts the relative single-cell RNA 
sequencing expression levels into relative counts for each gene without experi-
mental spike-in controls (45, 51). The census algorithm in Monocle2 estimates 
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the total number of mRNAs in each cell by calculating the ratio of the total num-
ber of single-mRNA genes to the fraction of the library contributed by them and 
then rescales the transcript per million (TPM) in single cell values into mRNA 
counts for each gene. Monocle2 tests gene differential expression between groups 
through a likelihood ratio test for comparing a full generalized linear model with 
additional effects to a reduced generalized linear model based on negative bino-
mial distributions.

Linnorm

Linnorm proposes a new normalization and transformation method for single-cell 
RNA sequencing data analysis (49). The normalization and transformation param-
eters are calculated based on stably expressed genes across different cells. Linnorm 
uses the moderated t-statistics in the limma package for gene differential expres-
sion analysis through the empirical Bayes approach to centralize the estimated 
variances from the data.

Discriminative learning

Discriminative learning uses the multiple logistic regression framework (50). 
Different from previous single-cell RNA sequencing differential analysis methods, 
discriminative learning uses the group labels as the outcome variables and uses 
the gene expression levels and other characteristics of the samples as the predictor 
variables to identify genes significantly associated with the group labels through 
likelihood ratio tests. 

STATISTICAL METHODS COMPARISON FOR SINGLE-CELL 
RNA SEQUENCING DIFFERENTIAL ANALYSIS

A previous comparison of six methods (SCDE, MAST, D3E, Monocle, edgeR, 
DESeq) for single-cell RNA sequencing differential analysis examined the perfor-
mance of those methods under different unimodal or bimodal distributions (52). 
The comparison found significant differences among those methods regarding 
precision, recall, empirical power, and overall performance. The investigation did 
not suggest an optimal method that performs better than other methods under all 
scenarios. A call for new differential analysis methods for single-cell RNA sequenc-
ing data was suggested as a result from the comparisons.

Another evaluation of 36 approaches for gene differential expression analysis 
in single-cell RNA sequencing data found remarkable differences in the perfor-
mance of those approaches (53). They also found the gene differential expression 
analysis methods developed specifically for single-cell RNA sequencing data did 
not perform generally better than the methods developed for bulk RNA sequenc-
ing data.

A recent comprehensive evaluation of single-cell RNA sequencing differential 
analysis methods compared 11 differential analysis methods, including SCDE, 
MAST, scDD, DEsingle, SigEMD, SINCERA, D3E, EMDomics, Monocle2, edgeR, 
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and DESeq2 (54). The gene expression values from real single-cell RNA sequenc-
ing experiments are multimodal with excess zeros, which makes the gene expres-
sion differential analysis challenging. Currently, there is no method available that 
can handle both multimodality and excess zeros. The comparison showed that no 
single method performs uniformly better than other methods under all circum-
stances. In general, non-parametric methods that could handle multimodality 
perform better than methods modeling excess zeros, while methods modeling 
excess zeros resulted in higher true positive rates and lower false positive rates. 
Gene differential expression analysis methods developed for single-cell RNA 
sequencing data had similar performance as those methods developed for bulk 
RNA sequencing data. In addition, low agreement was found among the selected 
genes from those differential analysis methods for single-cell RNA sequencing 
data. This recent evaluation also indicates the need of new differential analysis 
methods for single-cell RNA sequencing data.

CONCLUSION

As RNA sequencing technology is getting increasingly popular and more advanced 
in the biomedical and biological fields, coupled with a decrease of the cost for 
RNA sequencing experiments, more RNA sequencing differential analysis meth-
ods will be developed to identify differentially expressed genes between groups. 
For gene differential analysis methods used for both bulk RNA sequencing and 
single-cell RNA sequencing data, there is no consensus on an optimal method 
under all circumstances, although DESeq2 is currently very popular for gene 
expression differential analysis for bulk RNA sequencing data within the bioinfor-
matics community. Remarkable differences were also found among different gene 
expression differential analysis methods in terms of numbers and characteristics 
of selected differentially expressed genes. Gene expression differential analysis 
methods specific for single-cell RNA sequencing data have a similar performance 
as methods developed for bulk RNA sequencing data, when both were used for 
single-cell RNA sequencing data. Evaluations of commonly used gene expression 
differential analysis methods for RNA sequencing data indicate a need for better 
differential analysis methods, especially for single-cell RNA sequencing data. 
Taking consensus of the selected differentially expressed genes from multiple 
methods could improve accuracy and reduce the false discovery rate, but it could 
also increase the false negative rate. New methods that integrate multiple 
approaches with both reduced false positives and reduced false negatives might be 
the direction for future differential analysis method development.
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